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Abstract

Kalman filter methods for real-time assimilation of observations and dynamical systems
typically assume knowledge of the system parameters. However, relatively little work has
been done on extending state estimation procedures to include parameter estimation. Here,
in the context of the ensemble Kalman filter, a Monte Carlo based algorithm is proposed for
sequential estimation of the states and an unknown scalar observation variance. A Bayesian
approach is adopted which yields analytical updating of the parameter distribution. Our
proposed assimilation algorithm extends standard ensemble methods, including serial and
square-root assimilation schemes. The method is illustrated on the Lorenz 40-variable sys-
tem, and is shown to be robust to system nonlinearities, sparse observation networks, and

the choice of the initial prior distribution.



1 Introduction

Motivated by the work of Evensen (1994) and Burgers et al. (1998), various ensemble
Kalman filter (enKf) approaches have been proposed for Monte Carlo based data assimi-
lation in high-dimensional atmospheric systems. Examples include serial assimilation algo-
rithms (Houtekamer and Mitchell, 2001; Anderson, 2001), covariance stabilization techniques
(Hamill et al., 2001; Anderson, 2006), and square-root filters (Bishop et al., 2001; Tippett
et al., 2003). These enKf methods are typically based on the assumption of known or pre-
specified system parameters, e.g., observation and background error variances, correlation
ranges, and model bias terms, and the filter updating recursions are implemented conditional
on fixed parameter settings. However, one may also wish to jointly estimate the states and
the unknown parameters simultaneously. To this end, we propose a Bayesian algorithm for
sequential estimation of unknown scalar variance parameters within the enKf framework.

In previous work addressing the issue of parameter estimation in atmospheric systems,
Dee (1995) and Dee and da Silva (1999) provide a method for sequential and off-line esti-
mation of parameters in the background and observation error covariance matrices. Their
approach specifies a conditional Gaussian density function for the observational quantities
given the atmospheric state and the unknown parameters, and estimates parameters by a
recursive maximum likelihood (ML) procedure. An extension of this method is considered
by Mitchell and Houtekamer (2000), who propose a ML-algorithm for estimation of unknown
covariance parameters within the enKf framework. Another approach within the enKf con-
text is considered by Anderson (2001), who estimates a constant forcing term by augmenting
the state vector to include the unknown parameter. In recent work, Evensen (2005) considers
sequential estimation when the state and parameters are jointly Gaussian.

In this paper, we take a fully Bayesian approach to the sequential estimation problem,
where beliefs about the unknown parameters - along with beliefs about the system state -
are represented through a joint probability distribution. This method provides a natural
mechanism for incorporating prior knowledge about the parameters, and directly produces
uncertainty measures for the parameters from the posterior distribution. In the case of esti-
mating variance parameters, prior information can be based on knowledge of measurement
instruments and the natural constraint of positivity. Furthermore, parameter uncertainty is
allowed to impact prediction of the state as well as the observable quantities. We note that
the methods of Anderson (2001) and Evensen (2005) incorporate parameter uncertainty in
the state estimation process, but are based on linear updating rules and do not apply to the
case of variance parameters. This work also delineates why such scale parameters cannot be

efficiently estimated using linear updating or state augmentation.



To implement our method, an inverse-gamma prior distribution is assumed for the un-
known variance parameter, and, conditional on the parameter, a Gaussian prior is specified
for the state vector. This conditioning allows a straightforward extension of existing enKf
methods (including the serial and square-root assimilation techniques) to estimate unknown
scalar variance parameters. To our knowledge, this approach has not been considered in the
data assimilation literature, but leads to a solution which is closely related to that of Dee
(1995). The developments are given in the context of linear (or linearized) system dynam-
ics and Gaussian forecast distributions, but simulations demonstrate robustness to system
non-linearities and non-Gaussian forecast distributions.

The paper is outlined as follows. Section 2 gives notation and background for com-
bined state and parameter estimation in state-space models. In Section 3 we consider linear
Gaussian models with an unknown scalar variance. We state the form of the joint poste-
rior density, and propose a new, ensemble-based algorithm to sample from this distribution.
Section 4 provides detailed simulations to evaluate the performance of the algorithm as a
function of ensemble size, system non-linearity, choice of prior distribution, and density of
the observation network. Bias considerations and extensions are handled in Section 5. Sec-
tion 6 provides conclusions. Serial and square-root versions of the algorithm are given in the

Appendix.

2 Notation and Background

Let y; and x; be n and p dimensional vectors representing the observations and the unob-
served state of a system at time £. Also, let # be a set of unknown parameters. The general

state-space model is specified hierarchically through the observation and transition densities,

Observation: y; ~ p(y¢|xs,0),

Transition: x; ~ p(x¢|x—1,0).

Here, p(y:|x;,0) specifies the conditional probability density of the observations given the
state and the parameters, and p(x;|x;_1, #) specifies the state transition density. In this work
we also specify a joint prior density for the initial state and the parameters, p(xo, 8|Yy), where
Y, denotes the information at time ¢t = 0. Further, let Y; = {Yo,y1,...,y:} denote the
information up to time t.

For our problem we consider the scenario where both the observation and transition
densities are Gaussian, and where the unknown parameter to be estimated is an observation

noise variance. The goal of our analysis is to sequentially (in time) estimate x; and 6 through



the joint posterior distribution p(xy, 8|Y;). It is sometimes possible to jointly estimate x; and
f by augmenting the state to include the parameters and then applying the Kalman filter
to the augmented state vector. However, as mentioned previously, this estimation technique
is only useful when the observations are linear (or approximately linear) in the unknown
parameters, and cannot be implemented to estimate e.g. scale (variance) parameters. That
is, for state augmentation to be successful, observation equations of the form y; ~ Ax; +
BO + ¢; are implied, where A and B denote known matrices and &; is a zero-mean white
noise process. With this relationship between the data and the unknown parameter we have
cov(yy, 0) # 0, and the linear updating rule of the enKf can be effectively applied to update
the first two moments of the parameter distribution.

In the enKf framework, state augmentation has been successfully applied by Anderson
(2001) to estimate a constant forcing parameter F' of the Lorenz (1996) model. In his
numerical experiments, it can be shown that for a small time step § between observations
that the (linear) relationship between the data and the unknown parameter is cov(yy, F) ~
dvar(F), where var(F) is the second moment of the forecast distribution p(F|Y;_1). In
contrast, we consider parameters v that multiply the observation error term and result in
models of the form y; ~ Ax; + B + ve;. For these models it is straightforward to show
cov(yt, ) = 0, where (without loss of generality) we have assumed E(g; = 0).

As outlined above, state augmentation within the Kalman filter framework cannot be used
as a method to estimate the observation variance. Instead, to estimate scale parameters,
here denoted by «, we decompose the joint posterior density as the product of a conditional
state density p(x;|a,Y;) and a marginal parameter density p(a|Y;). In our setting, the
decomposition allows us to write separate, closed form updating recursions for the state and

the parameter. The conditional state density is given by

p(xt‘a:Yt) OCP(Yt|Xt;04) /p(Xt\Xt—hOé)p(Xt—ﬂ@; Yt—l)dxt—l- (1)

Assuming a fixed parameter value @ = «p, the Kalman filter provides a solution to the
integral in (1) for linear Gaussian models, where the state forecast density p(x; o, Yi 1)
is given by the integral. Similarly, the enKf and its variants mimic (1) using Monte Carlo

methods. The marginal parameter density is given by

plalYy) o p(yila, Yia)p(elYi). (2)

For the setting considered here, the marginal posterior p(«|Y;) is available in closed form,
and, as given in Section 3, our sampling algorithm uses the enKf to sample from (1) and the

inverse gamma distribution to sample from (2).
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We note that the above described conditioning is an identity and holds with « replaced
by a general parameter §. However, for general #, the involved integrals are typically difficult
to compute in practice; specifically, it is the recursion in (2) that is hard to solve analyti-
cally. Although the computational requirements are substantial when addressing the general
parameter case, the difference in uncertainty measures can be significant. To see how param-
eter uncertainty affects state and observation prediction when the parameters are treated
as random variables rather than constants, consider the well-known variance decomposition

extended to our context,
var(x|Yy) = var[E(x4|0,Y:)] + Elvar(x]6, Y3)], (3)

In the above, expectations are taken with respect to the posterior p(6|Y;) (see, e.g., Arnold,
1990, Sec. 3.4). Since var(6|Y:) > 0, we note that the inequality var(x;|Y;) > Elvar(x:|0,Y;)]
is strict. That is, the marginal posterior variance of the state is always greater than or equal
to the expected variance conditional on a given value of §. A similar decomposition holds

for prediction of a future observation y;, .

[Figure 1 about here]

To illustrate the effects of parameter uncertainty in the estimation process, Figure 1 shows
forecast densities for an observation (left) and posterior densities for a state variable (right).
The plot is for a linear Gaussian model, and the simulation setup is described in Section
4.1. The dashed curves represent densities based on the ML approach, which uses the ML
estimate for an unknown scale factor, and the solid curves represent posterior densities, which
integrate out the parameter uncertainty. As can be seen in both panels, the uncertainty is
larger for the posterior densities than the ML case, confirming the variance decomposition
given by (3).

As mentioned, the computational cost required to evaluate (2) analytically is typically
quite large in the general parameter case. However, here we consider a special case of an
unknown scale factor where the parameter posterior p(«|Y,) is available in closed form. In
the next section we introduce the model of interest and derive the analytical form of the
posterior distribution. Our developments proceed by mimicking the decompositions in (1)

and (2), and yield filtering algorithms for simultaneous inference of x; and «a.



3 (Gaussian State-Space Models

In what follows, we are interested in the class of state-space models expressed by the two

sets of equations

Observation: yve = H(xy) + ey, (4)
Transition: x¢ = M(xi—1) + ws. (5)

Here, H(-) and M(-) are known functions. The errors €; and w; are taken as serially and
mutually uncorrelated Gaussian white noise sequences with covariances R and aQ. Letting

N (m, C) denote the normal distribution with mean m and covariance matrix C, we have
er ~N(0,aR), w;~N(0,0Q).

For these densities, o is an unknown scale factor to be estimated, and the matrices R and
Q are assumed known. (Note that a deterministic system is obtained by setting Q = 0.)
With these assumptions, the implied observation and transition densities (see Section 2) are
p(yilxs, @) = N(H(xy), aR), and p(x¢|xi—1, @) = N (M (x4-1), Q).

In the next subsections, we propose a sequential Bayesian method for estimation of
(x¢, @) in the case of a linear Gaussian system, i.e., where H(x;) = Hyx; and M (x;) = M;x;
for known matrices H; and M;. As will be shown, under the linearity assumption and a
particular choice of prior distribution, the joint posterior p(x;, @|Y;) is available in closed
form. (In Section 4, we examine the robustness of the algorithm to the assumption of

linearity.)

3.1 Bayesian Inference for (x;, a)

The Bayesian model is initialized with a normal-inverse gamma prior distribution for (x¢, @),
providing a closed form solution to the integrals in (1) and (2). The normal-inverse gamma
prior is specified as a product of the densities p(xo|c, Yo) = N (1, aPy) and p(a|Y) =
ZG(v/2,dy/2), where (g, Po, 19, dy) are prespecified hyperparameters, and where ZG(a, b)
denotes the inverse gamma distribution with parameters a and b (e.g., Hogg and Craig, 1978,
Section 3.3).

Prior information about the states and parameters can be incorporated through choice
of the hyperparameters. For example, when x; describes a dynamical system, one might
choose the prior mean and covariance p, and P, based on system climatology. If prior
information about « is available, it can be incorporated by choosing do/(vp + 1) equal to

the prior estimate (best guess), and vy equal to the prior sample size (strength of belief).
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Strong beliefs about « are expressed by choosing a large value of 1, while weak beliefs are
represented by a small 1. A flat (i.e. uninformative) prior on (x;, ) can be obtained by
setting vy = —1,dy = 0, and Py = cI with large c.

With these assumptions, it can be shown that the conditional state forecast density is

Gaussian at each time t, i.e.,
p(xile, Yoa) = N(pf,aP]), (6)

Once new data y; is available, Bayes theorem can be used to calculate the joint posterior

density, which is again normal-inverse gamma, and factorizes as follows

p(Xt|Oz,Yt) = N(I"taO‘Pt)a (7)
paiv) = 176 (%.%). ®

With ¥, = H,P/ H; + R denoting the innovation covariance matrix, K; = P! H!Z; ! the
Kalman gain matrix, e; = y; —Htp,{ the innovation, and s; = €3, le, the innovation sum of
squares, the hyperparameters of the densities in (6) - (8) can be obtained recursively through

the following set of equations:

pl = Myp, ,, P/ = M/P, M, +Q, (9)
un, = n{-l—Ktet, P, = (I—Kth)P{: (10)
Vi = Vi1 +n, dy = di—1+ 8¢ (11)

Notice that the recursions in (9) and (10) are identical to the forecast and update steps
in the standard Kalman filter, and that the inverse gamma hyperparameters v; and d; are
updated in (11) by adding the number of new (scalar) observations and the innovation sum
of squares.

The recursions in (11) can be written in terms of v; and the posterior mode d;/(v; + 1).
When expressed in this latter form, the updating recursion is identical to the smoothing
parameter m, and the ML estimator ¢ defined in Dee (1995, Eq. 47). The connection
between these two approaches is not surprising: with a flat prior distribution the posterior
mode is equivalent to the ML-estimate.

Based on the above developments, the next section gives a sample-based Kalman filtering
algorithm for simultaneous assimilation of observations. The algorithm extends the original
enKf of Evensen (1994) and Burgers et al. (1998), but includes additional steps to update the
inverse gamma hyperparameters and generate the ensemble of scale factors. The algorithm
produces draws from the joint posterior distribution (7)—(8). Serial and square-root versions

of the algorithm are given in Appendix B.



3.2 Simultaneous EnKF Scheme for (x;, a)

We now delineate the simultaneous updating algorithm, where the entire n-dimensional vec-
tor y; is used to obtain the posterior distribution p(x;, @|Y;) in a single update step. In what
follows, we use the superscripts f and u to indicate the forecast (prior) and update (pos-
terior) ensemble members, and the subscript “new” to indicate reassignment of a variable.
For notational simplicity, all time subscripts are omitted. The initial prior hyperparameters
(p,P,v,d) are assumed to be specified by the user.

The algorithm is initialized by drawing a sample from the initial prior distribution: a* ~
IG(v/2,d/2) and x* ~ N(m,a'P), for i = 1,...,m. Then, for each assimilation time
t=1,...,T, we iterate between the forecast and update steps as follows. First, we generate
the forecast ensemble by propagating each state x* through the transition equation, i.e,
let x/" = Mx" + w', where w’ ~ N (0,0'Q). Then, the forecast mean and covariance are

computed based on the ensemble:

N
B m-—1 4 %
=1

m m o fi o Fy(xfi gy
Soxfl, Pl = 1 Z(Xﬂ—ﬂ)@ﬂ—u)'.
=1

Note that the sample covariance of the forecast ensemble members essentially produces aP/ ,
i.e., an estimate of oP/. Thus, we divide each term (x/* — it ) by Vo# in order to obtain
an estimate of the unscaled covariance matrix P/. Given the forecast moments 1/ and P/,
define the following sample based quantities: the innovation € =y — Hﬂf , the innovation
covariance matrix, > = HP/H' + R, the Kalman gain matrix, K = f’fH’ﬁl_l, and the
innovation sum of squares, § = & ﬁ]_lé.

With the above quantities we generate a sample from the joint posterior of a and x as

follows. First, generate the scale factor from its posterior distribution by setting

R —1
i d 5
anew = 7 - + 2 ~ Y
(d+ 38)at  (d+ 8)a?

where &' is a random draw from ZG(n/2,3/2). Then, conditional on the newly drawn scale

factor, generate a state vector using the perturbed observation enKf scheme: i.e. first draw
the perturbation &' ~ N(0, o, R), and then set

x" = x/' + K(y + & — Hx'%).

The two steps above provide us with draws, (a!,x"!),..., (™, x%™), from the joint posterior
distribution. To complete the analysis step, we update the inverse-gamma hyperparameters,

Vpew =V +n and dpe = d + 8.



Slutzky’s theorem can be used to show that, as m grows large, the above algorithm
provides us with a sample (x%',al),..., (x%" o™) from the joint posterior distribution,
p(xs, @|Y;). We illustrate the convergence with simulations in Section 4.1. The key dif-
ference between this algorithm and the perturbed observation enKf is that each state x* is
generated using a different random draw o' from the posterior distribution.

One practical issue which may impact algorithm performance, particularly in the early
assimilation cycles, is that, for small v, the initialization step for ¢ = 0 may produce some
extremely large o draws, and this will effectively downweight the data in the updating
algorithm for p(x;y, a|Y1). Thus, it may be better to initialize the filter with a prior estimate

that produces small a-draws during the early assimilation cycles.

4 Simulations

In this section we use simulations to verify the accuracy of the ensemble algorithm under
various conditions. The first goal is to show that the error due to Monte Carlo variability
diminishes as m grows. That is, for fixed ¢, we present simulations verifying that p(c|Y;)
approaches p(«|Y;) as m tends to infinity. In Section 4.1, this convergence is verified in
a linear Gaussian model where p(a|Y;) can be calculated analytically, thus allowing us to
confirm that the sample algorithm reproduces Bayes theorem. In Section 4.2, we consider
a nonlinear deterministic system where we examine the algorithm’s robustness to nonlinear
dynamics, choice of prior distribution, and sparsity of the observation network. We also
investigate whether the algorithm can be combined with the state augmentation approach

of Anderson (2001) to estimate an unknown forcing parameter.

4.1 Linear Gaussian Model

We first consider a linear Gaussian state-space model of the form in (3) and (4) with ob-
servation and transition operators defined by H(x;) = Hx; and M(x;) = Mx;. The chosen
transition model is a first-order vector autoregression where the states are defined at p
equally-spaced locations along a linear transect. The matrix M is tridiagonal with v, on the
main diagonal, v, on the superdiagonal, and 3 on the subdiagonal. Following Xu and Wikle
(2006), we set y; = .3, 7o = .6 and 73 = .1. Observations are taken at each time point and
each location, and we set H = I. For the error covariances, we assume R = I and Q = oI,
and choose 02 = 1 so that the unconditional variance of the states is approximately equal

to 2. The unknown scale factor « is set to 4.
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Data are generated at 7' = 40 time steps and n = 10 locations. We assume a mildly
informative prior with hyperparameters vy = 20, dy = 20, u, = 0, and Py = I. Note that
the prior distribution for o has a mode of 0.95 and is thus centered at the wrong value.
We run the filter algorithm defined by equations (9)—(11) to obtain the analytical posterior
distribution at each time step. For comparison, we also run the enKf algorithm from Section
3 using ensemble sizes of m = 10,25, 100, and 1000.

[Figure 2 about here]

Figure 2 shows the posterior densities at time ¢t = 10 for the fifth (scalar) state variable
and the scale factor a, both conditional on the data Yiy. The bold curves represent the true
densities obtained through the analytical filter, and the dashed curves represent ensemble-
based density estimates for various choices of m. (The density curves are obtained using a
default smoother in the statistical package R.) As seen in the left panel, the approximating
densities converge to the true density as m grows large. Similarly, in the right panel, the
approximating density for the scale factor p(«|Y19) converges to the true posterior p(a|Y1y).
These plots verify that the algorithm mimics Bayes’ theorem as m grows large. Further
simulations demonstrate that the rate of convergence of the ensemble-based posterior mode

to the true posterior mode is O(1/4/m), in line with consistent Monte Carlo estimators.

4.2 Lorenz 96 Model

We now consider the 40-variable system of Lorenz (1996) which mimics advection at equally-
spaced locations along a latitude circle. The differential equations defining the time evolution

of the system are given by

Tk = (-’L't,(k—l—l mod p) — Lt,(k—2 mod p))xt,(kfl mod p) — Ttk + F:

for k = 1,...,p = 40. Here, we set the forcing parameter F' equal to 8. We note that
the system equations contain quadratic non-linearities which define a non-linear transition
function M (-), and also that Q = 0 (c¢f. equation (5)). The interval between observations
0 controls the degree of nonlinearity in the system evolution, with 6 = .05 producing an
approximately linear system map, M(x;) &~ M;x;. In contrast, 6 = .25 corresponds to a
forward map with significant nonlinearities, which, in turn, yields distinctly non-Gaussian
forecast distributions (see Fig.2, Bengtsson et al., 2003). A numerical solver is used to

propagate the system over time.
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At each time 6t, t = 1,2,3,..., we take n noisy observations 1, 7 = 1,...,n, of the
state: i.e.,
ytj = h;-Xt + Stj, Etj ~ N(O, Ol).

In the above, x; = (241,...,%440)', and h; = (0,...,0,1,0,...,0) is an indicator vector
matching the observation y;; with z,;. We take the errors £,; to be mutually and serially
uncorrelated, and set the true observation variance to a@ = 4. Since the climatological
system variance approximately equals 16, this choice for the variance parameter produces
fairly noisy observations, with a ratio of observation to system standard deviation of roughly
1/2.

To deal with Monte-Carlo error, two important tuning methods are used at each assim-
ilation point to improve the accuracy of P/ First, covariance stabilization is performed by
multiplying sample covariances with the compact correlation function of Gaspari and Cohn
(1999, Eqn. 4.10) and Hamill et al. (2001), and produces the so called ‘tapered’ forecast
matrix. Secondly, covariance inflation is obtained by replacing P/ by (1 + k)P/, where k is
chosen to equal 1/m. The need for these tuning methods in the context of NWP are well es-
tablished (e.g., Anderson and Anderson, 1999; Houtekamer and Mitchell, 2001; Hamill et al.,
2001). A formal study of the effects of covariance tapering and inflation in high-dimensional
systems is given by Furrer and Bengtsson (2007). In these simulations, since the focus of
our work is on the estimation of p(x;, a|Y;), we determine the tapering radius ¢ and the
inflation factor k£ by trial and error.

The first two simulation sets consider estimation of x; and « using a full observation
network with H; = I (n = 40) and time steps of § = .05 and § = .25. For these sets, the
simultaneous assimilation scheme described in Section 3.2 is used to update the state and
parameter distribution. The initial prior for x, is based on the system climatology (i.e the
long-run mean and covariance), obtained by taking averages across a long time-integration
of the system. Three priors for « are considered: ZG(1.5,6), which represents a vague prior
centered at the true value of 4; ZG(15, 240), a tight prior centered at the incorrect value of
16; and ZG(15,15), a mildly informative prior centered at 1.

Our performance measure for the state estimate is the time-averaged root mean squared
error (RMSE). With fi, denoting the ensemble-based posterior mean vector, x; the true state

of the system, and 7 the number of assimilation cycles (observation times), the RMSE is

given by \/40% EL Ziozl(ﬂt,k — Xy )?. For estimation of a, we give the posterior mean and

the corresponding 95% empirical credible interval.

[Figure 3 about here]
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Based on the serial assimilation scheme, Figure 3 illustrates the performance of the
algorithm for estimating «. In this plot, the ensemble size is m = 100 and the tapering
radius parameter is ¢ = 10. For each of the previously described priors, the six panels depict
the estimated posterior mode and the 95% empirical intervals for p(a|Y;) over the first 500
assimilation cycles. The results for § = .05 and = .25 are presented in the left column, and
the results for 6 = .25 are on the right.

For 6 = .05, the 95% intervals cover the true value for most of the assimilation period
under priors 1 and 3. However, for the second prior, which is highly informative and centered
at the wrong value, the algorithm takes about 100 assimilation cycles before the intervals
cover the true value of 4. Note the close agreement between the three posterior distributions
at ¢ = 500, indicating algorithm robustness to prior specification. The three panels on
the right shows the simulation results with 6 = .25. As previously noted, the purpose
of increasing the time-interval between observations is to produce distinctly non-Gaussian
forecast distributions. The panels show, although the theory in Section 3 is based on the
assumption of normality, that the learning algorithm still works quite for longer forecast
lead-times. However, in this case, the filter takes longer to stabilize. One reason for the
efficiency of the algorithm for longer lead-times may be that the mean and covariance of the
forecast distribution are estimated quite accurately, and that the algorithm is based on these

first two moments.

[Table 1 about here]

Table 1 summarizes the performance of the algorithm for estimating x; and « as a function
of ensemble size, assimilation scheme and forecast lead time. Each simulation condition is
based on 1000 assimilation cycles. The results shown on the left hand side of the table are
for the simultaneous assimilation scheme, while those on the right are for the serial scheme.
Further, the first four rows of the table pertain to 6 = .05, and the last four rows to 6 = .25.

We note a few crucial points about the results. First, for both assimilation schemes and
for § = .05 and § = .25, as the ensemble size grows, the estimate of the posterior mode
converges to (or toward) the true parameter value. Second, the results for the serial scheme
appears to be slightly worse than those of the simultaneous scheme. Third, as expected, the
results for 6 = .25 are generally worse than those for 6 = .05. Fourth, in small ensembles,
both assimilation schemes appear to suffer from an upward bias in the estimation of .
Moreover, when comparing estimates of the posterior mode and the RMSE between the
simultaneous and the serial scheme for m = 10 and § = .05, (i.e & = 4.25 vs. & = 4.90, and
RMSE=.770 vs. RMSE=1.10), we see that the serial scheme has likely produced a divergent

13



filter. Fifth, the RMSEs for x; are approximately twice as large for § = .25 as for § = .05,
whereas the posterior uncertainty for « is largely independent of §. This last point is no
surprise: the posterior variance of « is controlled by the number of assimilated observations
which is the same for both time steps.

In the final two simulations we consider joint estimation of x;, «, and the forcing variable
F. Data is generated using 0 = .05 and 6 = .25 and we consider both a full and a sparse
observation network. The results are obtained using the simultaneous assimilation scheme
with m = 100 and tapering radius ¢ = 10. The priors are taken as o ~ ZG(15,15) and
F ~ N (8,1). To estimate F', we use the method of state-augmentation, where F' is added
to the state vector and treated as a time-varying quantity. In our implementation of this
method, to improve filter stability, artificial noise with a variance of .5/1/t is added to the

time ‘evolution’ of F'.

[Figure 4 about here]

Figure 4 shows the filtered mean and 95% credible intervals for o and F' over the first
500 assimilation cycles based on a full observation network with H =1 (n = 40) and § = .05
and 6 = .25. As can be seen, the 95% credible intervals for the parameters contain the true
values at the end of the assimilation period for both values of §, indicating robustness of
our algorithm to the joint estimation of o and F. Again, the uncertainty in « is unaffected
by the time step §, while the posterior uncertainty for the forcing parameter F' decreases
significantly as we move from ¢ = .05 to 6 = .25. The reason for the fast learning of F' in the
case of larger § is that the forecast variance of F' grows as the time between assimilations
increases, thus making the observations more informative about F'. However, as pointed out
earlier, as the time interval between assimilations grows, the system non-linearity will force

this relationship to break down.

[Figure 5 about here]

We also consider simulations using a sparse observation network where observations are
taken at every third location, i.e with n = 13. Figure 5 shows the filtered means and 95%
intervals for o and F over the first 1000 assimilation cycles. As in the previous plot, the top
panels depict results for 6 = .05, while the bottom panels show results for § = .25. Again,
both parameters are estimated accurately, with the 95% intervals containing the true values
for most of the assimilation period, and the credible intervals narrowing over time. We note

that the estimates of F' show a slight upward bias at the end of the assimilation period, and
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exhibit a slight oscillatory behavior for 6 = .25. The latter feature also appears in Figure 9
of Anderson (2001), and is likely due to the breakdown in the linear relationship between y

and F for larger time steps.

5 Bias Considerations and Extensions

This section considers bias adjustments and discusses extensions to include temporally and

spatially varying scale factors.

5.1 Bias adjustments

Our simulations verify that the proposed sampling algorithm reproduces Bayes theorem as
the ensemble size grows large. However, as demonstrated by the simulations, for small
ensembles, the effects of Monte-Carlo error results in upward bias in terms of the estimation
of the (true) posterior mode of p(«|Y;), which equals d;/(v;+1). Here, by considering a single
Bayes update step, we show that the bias is positive for fixed m.

For given data y;, the bias is caused by sampling variability in the term §; = (y; —
Hpi,)'S, 1(yt — f1;), our ensemble based estimate of the true innovation sum of squares
s; = (y: — Hu,)'S7 (y; — Hu,). Using classical results from multivariate statistics to

evaluate the expected value of 5;, we have

This result can be derived using properties of the F-distribution. A bias-corrected innovation

sum of squares can thus be obtained by defining C = (—2—), B = (-2-%5), and letting

m—n—2 2
5t = (8 — C)/B. It can then easily be established that F(s;) = s;. Unfortunately, the bias
adjustment is not valid when the ensemble size is smaller than the dimension of the data
vector y;. In the scenario where m < n, using developments similar to those of Furrer and
Bengtsson (2007), matrix expansions can be used to show

n

1 A
E(3) ~ - ’
(St) 8t+m;)\i+1’

where {Aq, ..., \,} are the eigenvalues of cov(Hx;|Y}). Of course, this result assumes knowl-
edge of the (true) eigenvalues, but can be used to approximate the leading bias term for a
given eigen-structure. For instance, for a flat spectrum, the bias of s, is O(n/m). However,
simulations show that this result is insufficient in terms of removing the upward bias in the

estimation of the posterior mode of a.
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The fact that the above scheme is insufficient is due to §; having a right-skewed distri-
bution, and implies that a bias correction scheme which minimizes the mean-squared error
(MSE) of §, may be more effective. Minimizing the MSE produces a multiplicative bias
correction of the form §; = (1 — £')§;, and it can be shown that £’ ~ 1/m. We note that
this approach yields a shrinkage type estimator similar to that obtained when estimating P/
through covariance tapering. To show the effectiveness of the shrinkage-type approach, we
present simulations that re-produce rows 1-2 of Table 1 with §; replaced by §; = (1 —1/m)5;.
The results are given in Table 2. As can be seen, for the simultaneous assimilation scheme,
the approach of minimizing the MSE of the ensemble based innovation sum of squares works
quite well for m = 10 and m = 25. However, although the results for m = 25 are encouraging,

the serial assimilation still shows sign of filter divergence for m = 10.

5.2 Extensions to multiple scale factors

We note that the normal inverse-gamma theory presented in Appendix A does not extend
to include temporally or spatially varying scale factors. That is, it is not possible to ob-
tained a density decomposition akin to that given by (1) and (2) which also yields a closed
form solution for the posterior distribution. However, simulations show that the algorithm
presented in Section 3.2, which explicitly includes a step to estimate the unscaled forecast
covariance P/, converges toward the true parameter values even in settings with multiple
a’s. We provide two simulation examples to demonstrate this.

In the first simulation we consider temporally varying o where we alternate between
taking observations with scale factors oy = 4 and oy = 1. That is, with y;; = x4 + &4, we
set £45 ~ N (0, ) at odd time points (t = 16,34,...), and set &;; ~ N (0, ) at even time
points. In the second simulation, we take data from an observation network with spatially
varying «o’s. Here, for odd spatial indices (j = 1,3,...,39) we set oy = 4, while for even
spatial indices we set as = 9. Both simulation sets consider a full observation network
(j = 1,2,...,n = 40). Thus, in the second setting, we take n; = 20 observations with
a1 = 4 and ny = 20 observations with a, = 9 at every time point. Data is observed every
0 = .05 time points, the ensemble size is m = 100, and the tapering radius is ¢ = 10. The
simultaneous assimilations scheme is adopted, and the previously described bias correction
is employed. Mildly informative priors centered at the correct parameter values are used to

initialize the filter. Results from both simulation sets are shown in Figure 6.

[Figure 6 about here]
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The top and bottom rows of Figure 6 show the results for the case of temporally and
spatially varying scale factors, respectively. Each of the four panels show estimates of the
scale factor along with the corresponding 95% credible intervals for the first 7" = 4000
assimilation cycles. As can be seen, the algorithm works well in the case of temporally
varying scale factors, but produces a more erratic filter in the case of spatially varying scale
factors. We speculate that the robustness of the algorithm to temporally changing scale
factors is due to the fact that the non-linear forward map of the Lorenz system provides
mixing of the samples between assimilation cycles. However, in our algorithm, such mixing
is not present in the case of spatially varying scale factors that pertain to observations which

are assimilated simultaneously in blocks at the same time point.

6 Conclusions

We outline a Bayesian approach to sequential state and parameter estimation within the enKf
framework. In this approach, the joint posterior distribution for the states and parameters
is decomposed into two parts: the conditional posterior for the states given the parameters;
and the marginal posterior for the parameters. Our work considers the special case of a linear
Gaussian model with unknown scale factors, and provides an algorithm to sample from the
joint posterior distribution of the parameters and the states. Most data assimilation schemes
require knowledge of such parameters, and our work provides an automatic way of selecting
them. We also present serial and square-root versions of the algorithm.

For the linear Gaussian model, simulations show that the algorithm converges to the
analytical form of the posterior as the ensemble size grows large. Further, using the Lorenz
(1996) model, the method is shown to perform well under strong departures from linearity,
incorrectly centered prior distributions, and sparse observation networks. We also show that
the approach can be easily combined with the state augmentation idea of Anderson (2001)
to estimate an unknown forcing parameter.

In current research, we are exploring approximate Bayesian methods for estimating gen-
eral covariance parameters (e.g., correlation length scales). For these parameters, no an-
alytical form is available for the parameter posterior, requiring solutions for which heavy
computational resources are needed. To deal with such computational expense in real-time
systems, one may proceed by approximating the marginal posterior for the parameters, and

this is the topic of future research.

17



Appendix A: Normal Inverse-Gamma Results

Here we derive the distributional results given in Section 3.1; see also West and Harrison
(1997, Ch. 4).

At time ¢ — 1, we assume that the joint posterior distribution for (x;_1,«) is normal
inverse-gamma where p(x;_1|a, Yi—1) = N (1, @Py_1) and p(a|Yi—1) = IG(14-1/2, di—1/2),
where N (m, C) denotes a normal density with mean m and covariance C, and ZG(a, b) the
inverse gamma density with parameters a and b. (See Figure 7 for various ZG density func-
tions.) The forecast and posterior distributions at time ¢ are derived as follows.

For the state vector x;, the conditional forecast density is

p(x¢lo, Y1) = /p(Xt|Xt1,a)p(Xt1|04,Yt1) dx; 1

= /N(Xt|Mtxt—la Q) N (xt—1 |1, @Py1) dxy—1
= NMp;_ 1, a(MP; 1 M; +Q))
= N(uf,oP)).

A similar convolution yields the conditional forecast density for y;, i.e. p(yia, Y1) =
N (Htu{ ,a3;). Further, Bayes theorem conditional on « produces the posterior density for
i, 1.e. p(xela, Yi) = N (py, oPy).

For the unknown scale factor «, the posterior distribution is derived as follows. The

prior distribution is inverse-gamma with density p(a|Y;_;) = ca~ 2 ~!exp{—%=t

5}, where ¢

is a normalizing constant. The likelihood is proportional to p(y:|a, Y,—1) oc o~ % exp {—5—3},
where s; = (y; — Htu{ )=t (v — Htu{ ) denotes the innovations sum of squares. The

posterior distribution is then proportional to the prior times likelihood

plalYy) = aaw—wnexp{_mk

2c

with normalizing constant ¢. This can be recognized as an inverse gamma density with

parameters v;/2 and d;/2, where vy = v;_1 +n and d, = dy_1 + $;.
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Appendix B: Serial and Square Root Assimilation

Here we derive serial and square-root versions of the algorithm presented in Section 3.2. We
assume a linear Gaussian model and independent observation errors with R = I. (Note that
the observation equation can always be “whitened” by pre-multiplication by R™/2.) Letting
j denote the observation index and hj; the jth row of H;, the observation equation is written
in scalar form as follows

Yij = h;th + Etj, Etj N(O, Ck),

for j = 1,...,n. At a fixed time %, the goal of serial assimilation is to compute the joint
posterior distribution p(x:, @|Y};) for each observation j = 1,...,n. where Y;; denotes the
information up to time ¢ and observation j. Yy is the information at the start of time ¢.
Assuming the same prior as in Section 3.1, we obtain a normal inverse-gamma posterior
for all ¢ and j; ie., p(xi|a, Yy) = N(my,aPy) and p(a|Yy) = IG(vy;/2,dii/2). The

updating recursions for the hyperparameters are as follows

o = Mypy_q,, Py = M;P; 1 ,M;+Q (12)
Bij = Hyjo1 + Kijer Py = (I_ktjhéj)PtJ—l (13)
Vyj = z/t,j,1+1 dtj = dt,j71+5tja (14)

and we set vy = 141, and dyy = d;—1,,. In the above, e;; = y; — hf:jlit,j_1 is the innovation,
o = h;th,j,lhtj + 1 the innovation variance, k;; = P, ;_1h;;/0;; the Kalman gain vector,
and sy; = e7;/0y; is the innovation sum of squares.

The algorithms described below mimic equations (12)—(14) using ensemble methods.
To simplify notation we supress subscripts ¢ and j except where necessary, and use the
subscript “new” to denote reassignment of a variable. At time t — 1 we start with a sample
(x',al),..., (x™ a™) from the posterior distribution p(x,@|Y;_; ), along with the current
inverse gamma hyperparameters (v, cz) Next, a sample from the forecast distribution is
obtained by propagating the states through the evolution equation:

x! =Mx' +w', w~N0,adQ).

new

for i = 1,...,m. This provides a sample from the joint forecast disribution p(x,a|Yy)-
Given the observations y; = (Y1, - - -, Y ), the algorithms described next allow us to update

this sample to obtain draws from the joint posterior distribution.
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Algorithm 1: Serial Assimilation

Step 0: Start with a sample (x!,a!),..., (x™,a™) from the forecast distribution p(x;, a|Yy)

and the current inverse gamma hyperparameters (v, CZ)

Step 1 (Updating): For each observation j =1,...,n

1. Compute the sample-based mean and covariance:

AV

N Gy T
52:: P_m—l,Z ot )

2. Compute the innovation, innovation variance, Kalman gain vector, and innovation sum

of squares:

3. Update the inverse gamma hyperparameters:

~

Vnew = V + 1, dnewzcz'i'<§

4. Fori=1,...,m, draw a random variate & ~ ZG(1/2,3/2), and set

5. For i =1,...,m, draw a random variate &* ~ N (0, ), and set

new

Xpew = X'+ k(yyj + &' — hyx’).
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Algorithm 2: Square-Root Assimilation

Step 0: Start with a sample (x!,a!),..., (x™,a™) from the forecast distribution p(x;, a|Yy)

A

and the current inverse gamma hyperparameters (v, d).

Step 1 (Initialization): Compute the forecast mean, fi, and construct the p X m perturbation

matrix Z = [z', 2%, ...,2z™], where
7z =(x' - p)/Vai, i=1,...,m.

Step 2 (Updating): For each observation j =1,...,n:

1. Compute the covariance, innovation, innovation variance, Kalman gain vector, and

innovation sum of squares:
P=27/m-1), é=y;—hj;is, &=h;Ph;+1, k=Phy/s5, 5=¢/s.
2. Update the inverse gamma hyperparameters:
Vpew =V + 1, cfnewch—i-é.

3. Compute the m x m adjustment matrix

—-1/2

A = (I-Z'hy;h};Z/6)
4. Update the mean vector and perturbation matrix
/:"new = ﬁ' + IA{éa Zew = ZA

Step 8 (Transformation): For i = 1,...,m, draw of ~ IG(v/2,d/2), define z' as the ith

column of Z, and obtain the updated state vector by setting

x' = o+ Voiz',
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Table 1: Filtering results from the Lorenz 96 model after 1000 assimilation cycles. Data
are generated using an observation variance of o = 4, and the initial prior is p(«|Y,) =
ZG(1.5,6). The table shows the root mean squared error (RMSE) for x;, the posterior mode
&, and 95% empirical credible intervals for . Rows 1-4 are based on 6 = .05; Rows 5-8 are

based on § = .25. The ensemble size is denoted by m and the tapering radius is given by c.

Simultaneous Serial

m c RMSE & 95% CI RMSE & 95% CI

10 25 770 425 (4.20, 4.30) 1.01  4.90 (4.84, 4.94)
25 5.0 553 4.04  (3.99, 4.08) 580 4.11  (4.05, 4.16)
100 10.0 A76  4.02  (3.98, 4.06) 483  4.03 (3.98, 4.08)
400 20.0 430 4.03  (3.99, 4.08) 420 4.02  (3.97, 4.07)
10 25 1.42 480 (4.76, 4.86) 153 5.64 (5.60, 5.69)
25 5.0 121 426 (4.20, 4.30) 1.22  4.60 (4.54, 4.65)
100 10.0 1.05  4.00 (3.95, 4.04) 1.06  4.23 (4.18, 4.27)
400 20.0 0.98 4.00 (3.96, 4.05) 0.98 4.11 (4.06, 4.15)
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Table 2: Bias correction results. Same setup as in Table 1. Here, 6 = .05 and with multi-

plicative bias correction factor of k' = 1/m.

Simultaneous Serial
m ¢ RMSE & 95% CI RMSE & 95% CI
10 2.5 769 3.96 (3.91, 4.02) 1.04  4.49 (4.44, 4.56)
25 5.0 582 3.97 (3.92, 4.01) 582  4.00 (3.95, 4.01)
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Figure 1: Forecast and posterior densities in the linear Gaussian model at time ¢t = 1. The
left panel shows the forecast densities for the fifth observation ys under the ML approach
(dashed lines) and the Bayesian approach (solid lines). The right panel shows the posterior
densities for the fifth state variable x5 under the same two approaches.
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Figure 2: Posterior densities for the states and scale factor in the linear Gaussian model at
time ¢ = 10. The left panel shows the marginal posterior densities for the fifth state variable,
x5, for the ensemble-based density estimates (dashed lines) and the true density (bold line).
The right panel shows the marginal posterior densities for the scale factor, o, under the same

approaches.
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Figure 3: Posterior mode and 95% credible intervals for « for the first 500 assimilation cycles
under three different priors. The left panels are for 6 = .05, and the right panels are for
0 = .25. The results are based on the serial assimilation scheme, using a full observation

network, an ensemble size of m = 100, and a tapering radius of ¢ = 10.

28



alY,~1G(15,15) FIY,~N(8,1)

5
45
g 8 i aps e
W
35 7
3 100 200 300 400 500 6 100 200 300 400 500
t t
alY,~IG(15,15) FIY,~N(8,1)
5 10
45 9
a o, F 8\:’}“\”\
35 7
3 100 200 300 400 500 6 100 200 300 400 500

Figure 4: Posterior mode and 95% credible intervals for o« and F for the first 500 assimilation
cycles using a full observation network. The top row is for § = .05, and the bottom row is
for 6 = .25. The results are based on the simultaneous assimilation scheme, an ensemble size

of m = 100, and a tapering radius of ¢ = 10.
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Figure 5: Posterior mean and 95% credible intervals for v and F for the first 1000 assimilation

cycles using a sparse observation network with observations taken at every third location,
k=1,4,7,...,37. The top row is for § = .05, and the bottom row is for 6 = .25. The

results are based on the simultaneous assimilation scheme, an ensemble size of m = 100, and

a tapering radius of ¢ = 10.
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Figure 6: Estimates of temporally and spatially varying scale factors. Each panel shows

estimates of the scale factor along with the corresp

for the first T = 4000 assimilation cycles. The top panels show the results for temporally

varying scale factors, and the bottom panels depict
left; Go-right).
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Figure 7: Inverse gamma densities for various parameter values.
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